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Communications to the Editor 

Silicon-Carbon Multiple-Bonded (pT-pr) Intermediates. 
The First Generation and Reactions of Silaethene 
[H 2 Si=CH 2 ] and Silanone [H 2 Si=O] 

Sir: 

In spite of considerable evidence in support of the tran­
sient existence of substituted silaethenes,1 direct evidence 
for the intermediacy of the parent compound, [H2Si=CH2] 
( la ) , is lacking. Since l a has been implicated as a product 
in the vacuum-ultraviolet photolysis of methylsilane,2 and 
since it has been the subject of several theoretical studies,3 

definitive evidence for just the formation of l a would be of 
considerable value. Additional information concerning the 
chemical behavior of la would help to answer the following 
question: "Is the general chemical behavior of 
[H2Si=CH2] similar to that reported for its di-, tri-, and 
tetrasubstituted derivatives?" 

We wish to report the first generation of la , a very reac­
tive transient intermediate, which can be chemically 
trapped when generated in the presence of a suitable sub­
strate. Gas phase thermolysis (560°, nitrogen flow system) 
of silacyclobutane4 generates l a as indicated in eq 1. When 
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N2 
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la 
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generated in the absence of a trapping reagent l a forms an 
intractable, high molecular weight polymer. However, if si­
lacyclobutane is copyrolyzed with a suitable trapping re­
agent, reasonable yields of 1:1 adducts (or their derivatives) 
are obtained as indicated in Scheme I. The reaction prod­
ucts5 of [H2Si=CH2], presented in Scheme I together with 
those of the more thoroughly studied 1,1-dimethyl-1-si­
laethene,115 in our opinion provide convincing evidence for 
the existence of [H 2 Si=CH 2 ] as a transient intermediate. 

The reactions summarized in Scheme I indicate that both 
[H 2 Si=CH 2 ] ( la) and [Me 2 Si=CH 2 ] ( lb) show similar 
behavior toward more reactive trapping reagents such as 
P h 2 C = O and (Me2SiO)3.6 However, l a reacts differently 
than lb when generated either in the presence of less reac­
tive substrates such as CH3CN or SiCU or in the absence of 
a trapping reagent. Under these conditions la does not form 
appreciable quantities of either a 1:1 adduct or volatile self-
condensation products such as (H2SiCH2)„ (n = 2, 3, or 4), 
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but rather reacts to form an intractable, presumably poly­
meric, yellow solid.8 It seems unlikely that the dimer of la , 
(H2SiCH2)2 , is formed and then undergoes thermal decom­
position since very similar compounds such as 1,1-dimethyl-
1,3-disilacyclobutane and l,3-dimethyl-l,3-disilacyclobut-
ane are stable under similar reaction conditions.9 The ab­
sence of dimer formation may indicate that the high reac­
tivity and/or very short lifetime of l a makes polymerization 
rather than dimerization the predominant reaction path­
way. 

Although the reactions of l a and lb with benzophenone 
are similar inasmuch as they both afford reasonable yields 
of P h 2 C = C H 2 via a pseudo-Wittig mechanism (Scheme 
II), two significant differences should be noted. First, the 
trimer and tetramer of unsubstituted silanone [H 2 Si=O] 
are not observed. This is not surprising since the trimer, 
(H2SiO)3, has never been reported and the tetramer, 
(H2SiO)4, which decomposes at room temperature,1 ' would 
probably not survive our reaction conditions. 

Second, the reaction between l a and P h 2 C = 0 produces 
diphenylmethane in addition to 1,1-diphenylethylene. When 
this reaction is carried out using 1,1-dideuteriosilacyclobu-
tane4 (isotopic purity ~95%) a mixture12 of Ph2CD2 , 
Ph2CHD, and Ph 2CH 2 (~64% total deuteration of the 
methylene position) is obtained. This indicates that an 
= S i H 2 moiety14 is responsible for at least a substantial 
amount of the reduction. 

Since the ratio of P h 2 C = C ^ P h 2 C H 2 was observed to 
be independent of the extent of reaction (i.e., the pyrolysis 
temperature) it seems reasonable to assume that la is a 
common precursor for both of these products. This assump­
tion, the larger yield of P h 2 C = C H 2 relative to that of 
Ph2CH2 , and the observation that both P h 2 C = C H 2 and 
Ph2CH2 are stable under the reaction conditions strongly 
implicates [H 2 Si=O] as the species responsible for most, if 
not all, of the observed reduction of P h 2 C = O . A tentative 
mechanism which explains these observations is outlined by 
eq b in Scheme II. 

Additional evidence for the intermediacy of [H 2 Si=O] 
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Scheme III 
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(silanone) is provided by the following experiment. Pyroly-
sis of a benzene solution of silacyclobutane (2.2 mmol), 
benzophenone (4.0 mmol), and hexamethylcyclotrisiloxane 
(10.0 mmol), followed by resolution by preparative GLPC, 
afforded 1,1,3,3,5,5-hexamethylcyclotetrasiloxane (32%) 
and 1,1-diphenylethylene (47%) as the only major reaction 
products15 (Scheme III). 

The products reported in Schemes II and III, the facile 
insertion of [Me2Si=0] into the Si-O bond of (Me2SiO)3 
under similar reaction conditions,16 and the observation 
that (Me2SiO)3 is stable under the reaction conditions con­
stitute convincing evidence for the existence of [H2Si=Oj 
as a transient intermediate. 

We are currently attempting to verify the intermediacy 
of an [ O = S i = O ] species by means of chemical trapping 
experiments. 
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a-Arylation of Carbonyl Groups. Utilization of the 
p-Toluenesulfonylazo Olefin Functional Group as an 
Enolonium Synthon 

Sir: 

In connection with a synthetic study, we required sub­
strates bearing an a-aryl ketone moiety (1). Methodology 
involving the a-arylation of ketones is one conceptual ap­
proach for the synthesis of such systems. Analysis of this 
problem suggests two primary modes of synthesis: (A) the 
combination of an enolate 2 (or its equivalent) with some 
electron-deficient aryl species or (B) reaction of an enolon­
ium (a-keto cation) synthon 3 with an electron-rich aryl 
species. 
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Although the reaction of enolates and enamines with 
strongly activated arenes, diphenyliodonium chloride, or 
benzyne has been shown to produce a-arylated ketones,'"9 

it appears that a more promising approach to enolate aryla-
tion is the method of Rossi and Bunnett involving the reac­
tion of enolates with photogenerated aryl radicals.10"12 An 
intramolecular variant of this latter procedure has recently 
been used to great advantage by Semmelhack et al. in their 
total synthesis of cephalotaxine.1314 

In assessing the enolate method for natural product syn­
thesis, complications can be anticipated in those cases 
where intramolecular condensations (aldol, Claisen) or fi-
eliminations can occur. Additionally, it has yet to be con­
clusively demonstrated that a kinetically generated enolate 
can be regiospecifically arylated."'15 

Whereas, a priori, methodology based on mode (B) might 
avoid some of these difficulties, there has been essentially 
no effort to utilize such a strategy.1617 

Superficial consideration of this problem suggests that 
the reaction of a-halo ketones with lithium diarylcuprate 
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